Search results for " lithium ion batteries"

showing 4 items of 4 documents

Nanostructured anode material for Li-ion batteries

2010

The present paper focuses on a nanostructured SnCo alloy electrochemically prepared by template method in view of its use as anode material alternative to graphite in lithium-ion batteries. The fabrication of SnCo nanowire arrays was carried out by potentiostatic co-deposition of the two metals by using nanostructured anodic alumina membranes as template. Electrochemical tests on lithiation-delithiation of these SnCo electrodes in conventional organic electrolyte (EC:DMC LiPF6) at 30°C showed that their specific capacity was stable for about the first 12 cycles at a value near to the theoretical one for Li22Sn5 and, hence, progressively decayed.

Materials scienceMetallurgyNanowireSNCO ALLOYElectrolyteElectrochemistrySnCo alloy template electrosynthesis alumina membrane anode lithium ion batteries electrochemical characterizationLithium-ion batteryAnodeSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringALUMINA MEMBRANEElectrodeLITHIUM ION BATTERIESGraphiteANODETEMPLATE ELECTROSYNTHESISTemplate method pattern
researchProduct

Nanostructured anode and cathode materials for Li-ion batteries

2010

Settore ING-IND/23 - Chimica Fisica ApplicataSnCo alloy template electrosynthesis alumina membrane anode lithium ion batteries electrochemical characterization
researchProduct

Iron and lithium-iron alkyl phosphates as nanostructured material for rechargeable batteries

2018

Abstract Inorganic/organic hybrid materials composed by iron atoms bonded to an alkyl phosphate can be easily synthesized by mixing at 110 °C iron chlorides with tri-alkyl phosphates. Since structural information on these products are lacking and taking into account that lithium/iron organic hybrid materials are important in lithium ion battery technology we report here the physico-chemical characterization of different hybrid lithium/iron butylphosphates. These materials are characterized by the presence of elongated hexagonal crystals stable up to 315 °C. The insertion of lithium does not affect the local structure. Thanks to such structures the material can be electrochemically-cycled an…

Materials scienceHybrid materials; Lithium ion batteries; Tri n-butyl phosphates; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesRedoxLithium-ion batteryIonchemistry.chemical_compoundGeneral Materials ScienceTri n-butyl phosphatesAlkylchemistry.chemical_classificationMechanical EngineeringAlkyl phosphate021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCharacterization (materials science)chemistryChemical engineeringLithium ion batteriesMechanics of MaterialsLithiumMaterials Science (all)Hybrid materials0210 nano-technologyHybrid material
researchProduct

Sn-Co nanowire-based anodes for lithium-ion batteries

2010

The demand of improvement in lithium-ion battery technology in terms of specific capacity and safety has stimulated the search for anode materials alternative to graphite. Among them, tin-based materials have been widely studied because tin can intercalate lithium up to atomic ratio Li/Sn of 4.4 to deliver a impressive specific capacity of 993 mAhg−1 (while graphite gives 372 mAhg−1). Unfortunately the high volume change of about 300%, which is related to the insertion/removal of lithium, causes the alloy pulverization and loss of electric contact that causes a poor cycle life. The synthesis of nanometric materials, intermetallic compounds and carbon composites are strategies that have been…

Settore ING-IND/23 - Chimica Fisica ApplicataSnCo alloy template electrosynthesis alumina membrane anode lithium ion batteries electrochemical characterization
researchProduct